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Abstract: The relationship between the generalized Woodward-Hoffmann rules for pericyclic reactions and the Hiickel-
Mobius rules of aromaticity is discussed, and it is pointed out that, since no formal analysis of the relationship is to be found 
in the literature, the commonly made assumption of equivalence requires detailed examination. It is shown that any pericy­
clic reaction is characterized by a connectivity cycle, a construct that defines pericycle topology in terms of the nodal proper­
ties of the individual basis-set AO's. By use of this construct, it is demonstrated that the generalized Woodward-Hoffmann 
rules and the aromaticity-based rules for pericyclic reactions are essentially equivalent. No proof of equivalence can be more 
rigorous than the available definitions of the topological terms "suprafacial" and "antarafacial", and appropriate formal def­
initions of these terms, more general and more precise than any that have previously been given, are therefore presented and 
illustrated. Applied to polycyclic transition states, the Woodward-Hoffmann rules and the Huckel-Mobius rules have exact­
ly the same scope and limitations. By means of the connectivity cycle, compact new topological rules equivalent to the 
Huckel-Mobius rules are deduced for thermal and photochemical pericyclic reactions. 

In a pericyclic reaction, by definition,1 a concerted reor­
ganization of bonds occurs around a ring of atoms. At any 
point along the reaction coordinate (except, usually, the ini­
tial and final points), a set of electrons (the mobile elec­
trons) are cyclically delocalized over the reacting centers 
(and in many cases, over other rings as well). Current gen­
eralized treatments of pericyclic reactions isolate the mobile 
electrons and the ring, or network, of atoms over which they 
are delocalized (the pericycle) and are concerned, basically, 
with the dual control exercised over the process by (i) the 
number of mobile electrons and (ii) the topology of the peri­
cycle. Thus, a pericyclic reaction is categorized as allowed 
or forbidden in terms of a special twofold condition, irre­
spective of classical effects (steric, inductive, angle strain, 
etc.) that can (and probably do in certain cases) prevent the 
"allowed" reaction or facilitate the "forbidden" one. Ulti­
mately, then, any rules for pericyclic reactions are simply a 
means of probing qualitatively (and therefore with some as­
surance of generality) the effect of this electron-number-
cum-topology duality upon the shapes of potential-energy 
surfaces in the region of possible reaction paths, a process 
being allowed thermally if this factor imposes no energy 
barrier upon the ground-state surface, and allowed photo-
chemically if the effect is to create an energy well2 or fun­
nel3 in the excited-state surface. Since a necessary concomi­
tant of the excited-state funnel (or well) is a ground-state 
energy barrier,2"5 it is easy to understand why the rules for 
thermal and photochemical pericyclic reactions should be 
antithetical. There is a simple and natural connection be­
tween such ideas and those of aromaticity and antiaromati-
city, especially now that the latter concepts have acquired a 
topological content through Heilbronner's discussion of 
Mobius annulenes7 and the subsequently formulated An 
rule for aromaticity in Mobius,8 or anti-Hiickel,9 arrays. 
Reflecting this connection, which now has strong support 
from both MO4 ,8 ,9 and VB10 theory, various treatments 
exist based upon the idea (termed "Evans' principle" by 
Dewar)9 that the theory of pericyclic reactions is simply the 
theory of aromaticity applied to transition states (an idea 
that has a very general appeal, bringing together, as it does, 
two considerable tracts of chemical theory). For such rea­
sons, as well as for simplicity of application, perhaps the 
most satisfying of current generalized treatments of pericy­
clic reactions are those due to Zimmerman8 and Dewar.9 

Each of these methods has its particular advantages: Zim­
merman's, as an interface between the aromaticity ap­

proach and the use of correlation diagrams;1 '2^8 '11 Dewar's, 
in its applicability to pericycles containing more than one 
ring and therefore not necessarily subject to the Hiickel-
Mobius (An + 2)/4« rules of aromaticity. 

Woodward and Hoffmann's generalization,12 involving 
rules based on the parity of the total number of (Aq + 2)s 

and (4r) a components, by contrast appears somewhat eso­
teric and sui generis, though it has the special attraction for 
the organic chemist that it fixes attention upon conventional 
chemical bonds and stereochemistry, rather than upon MO 
or VB theory. In a sense, this is its particular strength: it is 
not beyond conception that the generalized component rules 
(WH rules), being formulated in classical terms, might sur­
vive any drastic future revolution in bonding theory.13 Al­
most, their very success ensures as much; any theory of 
bonding must necessarily accommodate, if not the WH 
rules themselves, then at least something very like them. 
Yet, at the present time, when an essential unity might jus­
tifiably be sought behind all the various approaches, the 
exact status of the WH rules remains obscure. Woodward 
and Hoffmann remark12 that the generalized rules may be 
proved by induction from the rules for two-component cy-
cloadditions.14 Given rigorous and appropriately general­
ized definitions of the topological terms "antarafacial" and 
"suprafacial" this is indeed so, but no such definitions have 
yet been advanced in the literature. Moreover, an inductive 
proof of this type leaves unanswered various questions. Are 
the WH rules fundamentally equivalent to the aromaticity-
based rules for pericyclic reactions? Or do the latter imply 
some similar, but not identical, set of "classical" rules? And 
if not identical, which set has the wider scope? The proposi­
tion that they are equivalent (tacitly accepted, it appears, 
by most authors) might be defended on the grounds that the 
two kinds of approach seem to agree well in their predic­
tions. However, current agreement does not constitute for­
mal proof. 

It is demonstrated formally in this paper that Woodward 
and Hoffmann's generalization and the theory of aromatic 
transition states are essentially equivalent (which strength­
ens one's faith in the former and ensures the potential "sur­
vival-value" of a classical base to the latter). Several novel 
points of interest arise therefrom. 

Nodal Patterns and the Connectivity Cycle 

The theory of aromatic transition states is based on the 
assumption that the rules for thermally and photochemical-
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Iy allowed pericyclic reactions are identical with the rules 
for aromaticity and antiaromaticity, respectively.15 The 
practical value of this approach depends upon the existence 
of simple criteria for aromaticity in transition states. These 
criteria have been given with particular elegance by both 
Zimmerman8 and Dewar9 in terms of the topology of the 
AO-overlap connections in the pericycle. Since the relevant 
AO's (the basis set, over which the mobile electrons are de-
localized) may form one or more closed cycles of overlap 
connections, it is evident that pericycles exist at various lev­
els of complexity. Initially, we confine discussion to cases in 
which the basis-set AO's overlap in a single closed cycle, 
the immediate aim being to deduce the WH rules from the 
rules for aromaticity in monocycles. More complex peri­
cycles are considered in the final section. 

As there is general agreement upon the rules for aromati­
city in monocycles, it is immaterial which method is taken 
as starting point. However, in view of the form of argument 
to be employed here, it will be most convenient to adopt 
Zimmerman's treatment.8 In this, one considers the sign of 
the overlap integral between adjacent members of the basis 
set of AO's. The AO phases can be assigned arbitrarily, but 
the parity (oddness or evenness) of the total number Z of 
negative overlaps in the basis set is invariant for a given per­
icycle topology. Systems with Z even and Z odd are de­
scribed as Huckel and Mobius systems, respectively. The 
significance of these terms has been discussed fully by Heil-
bronner7 and Zimmerman,8 and it will suffice here to say 
that the parity of Z allows one to infer the HMO energy-
level pattern of the pericycle and so to determine whether a 
given pericycle is aromatic or antiaromatic. Zimmerman's 
rules for allowed pericyclic reactions are given in Table I, in 
which 2m is the total number of mobile electrons, and n is 
any positive integer (or additionally zero in the An + 2 
case). 

To exemplify Zimmerman's procedure for analyzing per­
icyclic reactions, a [T2S + ^2S] cycloaddition is illustrated in 
formula 1, in which the shaded and unshaded lobes repre-

Table I. Zimmerman's Rules for Allowed Pericyclic Reactions 

Z 

Even 
Odd 

Topology 

Huckel 
Mobius 

Thermal 

An+ 2 
An 

2m 

Photochemical 

An 
An+ 2 

sent positive and negative regions, respectively, of the four 
basis-set AO's, and the dashed lines indicate the overlaps 
within the pericycle. All overlapping lobes have the same 
sign, Z (=0) is therefore even, and the system has Huckel 
topology. Since 2m = 4, the reaction is photochemically al­
lowed (and, of course, thermally forbidden). Alternative, 
but completely equivalent, ways of considering the system 
are shown in 2 and 3. In 2, Z is again zero; in 3, where the 
basis set is chosen differently, Z = 2. In either case, Z is 
even, and we reach exactly the same conclusion as in the 
first analysis. 

We now define a connectivity cycle as a continuous 
closed curve that passes through one or more lobes (or, 
more precisely, regions of nonzero wave function) of each 
basis-set AO in the pericycle, makes a single direct connec­
tion between each pair of adjacent overlapping AO's, and 
does not directly connect any nonoverlapping pair of lobes. 

Connectivity cycles are easily obtained for a [„.2S + A] 
cycloaddition by joining up adjacent ends of the dashed 
lines indicating the overlaps in 1, 1, and 3. The resulting 
connectivity cycles are shown in 4, 5, and 6, respectively. 
All three are equally valid connectivity cycles for the [V2S + 
T2S] process. There exist several other possibilities, which 
are easily constructed. In fact, connectivity cycles can be 
chosen with considerable freedom. To avoid a possible con­
fusion, however, it should be pointed out that, for pericyclic 
reactions in which there is a single closed cycle of AO's, the 
connectivity cycle, too, must be monocyclic. We do not, for 
example, simultaneously make the connections 3a-4a and 
3b-4b in 4 and 5. An extra connection here would lead to a 
bicyclic connectivity cycle, which is not equivalent topologi-
cally to the monocyclic AO set. Hence the necessity for the 
word "single" in the definition of a connectivity cycle. 

The parity of Z may be determined from diagrams such 
as 4-6 exactly as before, but note that, though essentially a 
purely mathematical construct, the connectivity cycle does 
draw our attention to a feature that does not enter explicitly 
into Zimmerman's treatment, namely, the nodal character­
istics of the individual basis-set AO's: in 5, the connectivity 
cycle is intersected by the node of AO-3 in passing from 
lobe b to lobe a, and likewise at atom 4; in 4 and 6, on the 
other hand, the connectivity cycle is intersected by no AO 
nodes. A further example is shown in 7, which illustrates 
one possible basis set and connectivity cycle (not the sim­
plest!) for the thermally allowed Diels-Alder reaction. Here 
the cycle crosses two AO nodes (atoms 5 and 6) and two re­
gions of negative overlap (overlaps 1-6 and 4-5). With 
these points in mind, we now turn to the generalized pericy­
clic reaction. 

To any pericyclic reaction, assign a basis set and a con­
nectivity cycle. As will be appreciated from 5 and 7, the 
connectivity cycle will in general pass through both positive 
and negative AO regions. A sign inversion occurs upon the 
connectivity cycle whenever the latter passes (i) across a re­
gion of negative overlap or (ii) across the local16 nodal sur­
face of an AO. Let Z be the number of negative overlaps in 
the basis set, as before, and TV the number of local nodal in­
tersections of the connectivity cycle. The total number of 
sign inversions upon the connectivity cycle is thus N + Z. 
Now make a complete circuit round the connectivity cycle, 
starting with a given AO lobe. The sign of this lobe is of 
course fixed by one's prior assignment of the basis set. Con-
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Table II. Connectivity Rules for Allowed Pericyclic Reactions 

N 

Even 
Odd 

Topology 

Huckel 
Mbbius 

Thermal 

An+ 2 
An 

2m 

Photochemical 

An 
An + 2 

sequently, between leaving and reentering this lobe to com­
plete the circuit, one will of necessity encounter an even 
number of sign inversions. Hence JV + Z is even. Always, 
then, Af and Z are either both even or both odd. Thus, it fol­
lows that, for any cycle, the number of negative overlaps 
(Z) and the number of local nodal intersections (JV) must 
have the same parity. 

Having established this connection between JV and Z, we 
may choose either as topological invariant for the pericycle. 
If we choose JV, we are led to a new set of rules for allowed 
pericyclic reactions, as summarized in Table II. These rules 
can be applied without reference to the relative phases of 
the different AO's in the basis-set diagram; we merely 
count the number of times an arbitrarily chosen connectiv­
ity cycle is intersected by an AO node. Since 4« + 2 and An 
represent opposite parities of m, the connectivity rules of 
Table II can obviously be summarized in the compact form 
of (1) and (2), which bring out well the twofold nature of 

Thermal ly allowed 
(aromatic t rans i t ion s tate) : m + N is odd (1) 

Photochemical ly allowed 
(ant iaromatic t rans i t ion s ta te) : m + JV is even (2) 

the conditions for allowed pericyclic reactions. Analogous 
statements in terms of m and Z are easily derivable from 
Table I.17 

Formulas 8 and 9 illustrate the application of the connec­
tivity rules to a [1,3] sigmatropic shift in which the atom at 
a migrates with inversion of configuration along the face of 
the lower three-center system. 8 and 9 are equivalent, sim­

ply representing alternative choices of connectivity cycle. In 
8, there is one nodal crossing (at a), and in 9 there are three 
(at a, b, and c). In both cases, N is odd and, as a four-elec­
tron process (m = 2), the reaction is allowed thermally. An­
alogously, [„.2S + T2S] and Diels-Alder cycloaddition can be 
analyzed readily by reference to formulas 4-7. 

The idea of a connectivity cycle is, of course, not restrict­
ed to pericycles, but can, with an obvious slight modifica­
tion of wording in the definition, be applied to the static 
overlap situation in a stable molecule. Thus, rule 1 can also 
be regarded as a general rule for aromaticity in stable mole­
cules, combining the original Huckel 4« + 2 rule and the An 
rule for Mobius annulenes. In fact, just about the simplest 
possible statement of the aromaticity rules for monocycles 
in terms of topology and number of mobile electrons is that 
a monocyclically conjugated system will be aromatic if m + 
N is odd. 

Components and the Component Rules for Allowed 
Pericyclic Reactions 

The basis set of AO's can be arbitrarily dissected into 
subsets, each containing one or more AO's. If we specify 

that no AO shall belong to more than one subset and that, 
in any subset containing more than one AO, the AO's shall 
be linearly connected (i.e., form an unbroken chain of near­
est neighbor overlap connections in the pericycle), we can 
make a transition to a more "chemical" way of treating per­
icyclic reactions. 

Accordingly, we choose each subset, defined as above, as 
the group of AO's corresponding to some chemical grouping 
( C = C , C = C - C = C , C - C , etc.) that is present in the 
reactant(s) and directly involved in the pericyclic process 
(i.e., undergoes a first-order change in bonding relation­
ships in the reaction).12 Occasionally, one or more subsets 
will be single AO units (if, for example, a lone pair is in­
volved). We term these chemically discrete (or putatively 
discrete) units components. There is no loss of generality if 
we restrict consideration to even-electron components, for 
aromaticity and antiaromaticity are associated with even-
electron systems, and any even-electron system can always 
be dissected into a set of components none of which con­
tains an odd number of electrons. The number of electrons 
in a component must therefore be of the form Aq + 2 or Ar, 
where q and r are nonnegative integers. 

Let an integer m,- be associated with the Jth component in 
a pericyclic reaction such that 2m, is the number of mobile 
electrons that this component contributes to the pericycle. 
mt is thus odd or even, respectively, according as the num­
ber of electrons contributed is of the form Aq + 2 or Ar. 
Also, let Nt be the number of local nodal intersections of 
the connectivity cycle occurring within the z'th component. 
Ni, like mi, may be odd or even. Clearly, if the total number 
of components is v 

m =2Lm, and JV = 2_< -Nj 
j=i j=i 

and therefore 
V 

m + N = £ ( m , + JV,) (3) 
J=I 

We are now concerned to deduce from rules 1 and 2, 
which were formulated in terms of the properties of the en­
tire pericycle, equivalent rules formulated in terms of the 
properties of individual components. Since the argument in­
volves parities rather than the absolute values of integers, it 
is convenient to divide the terms in the summation on the 
rhs of (3) into two groups, according as m,- + JV,- is even or 
odd. Correspondingly, we recognize two classes of compo­
nent: 

Class-0 components: m,- + JV,- even; total number J/(0) 
Class-1 components: w,- + JV/ odd; total number I<(1) 

the 0,1 notation being adopted simply because O and 1 are 
the least nonnegative residues of m,- + JV,- to modulus 2 for 
the two classes19 (i.e., the smallest nonnegative integers 
having the same parity as w,- + JV1-). Equation 3 may now be 
expanded to give 4, 

" ( O ) 1/(1) 

m + N = J^ (nij + JV,) + J^(mk + Nk) (4) 
j=i k=i 

the new suffixes j and k being introduced because the even 
terms (j) and the odd terms (k) are now to be enumerated 
separately, rather than by a single sequence of integers. 
Now, since any even number is congruent (mod 2) to zero 
and to any other even number, and any odd number to 1 
and to any other odd number,19 we have, by definition 

nij + Nj = O (mod 2) (5) 

and 
mk + Nk = 1 (6) 

and eq 4 therefore reduces to the congruence 
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I ' d ) 

m + N = X ! 

the first summation on the rhs of eq 4 having vanished and 
the second collapsed to the number 1 taken e(l) times. 
Hence 

m + N = v (X) 

or, in words, in any pericyclic reaction, m + N and v(l) 
must have the same parity.20 Combining this statement 
with the connectivity rules, 1 and 2, we obtain (7) and (8) 

Aromat ic t rans i t ion s ta te 
( thermally allowed): v(l) i s odd (7) 

Ant iaromat ic t rans i t ion s ta te 
(photochemically allowed): ^(1) is even (8) 

as the necessary conditions for transition-state aromaticity 
and antiaromaticity in terms of the parity of v(l). To show 
that these conditions are also sufficient, suppose that a peri­
cyclic reaction exists having v(l) odd and a transition state 
that is not aromatic. Not being aromatic, the transition 
state must be either antiaromatic or noncyclically delocal-
ized. The latter possibility was excluded at the outset by the 
definition of a pericyclic reaction, and consequently the 
transition state must be antiaromatic. But, by (8), it then 
follows that i'(l) must be even, which conclusion is absurd 
since it contradicts the original assumption. Hence, every 
pericyclic transition state having K(1) odd must be aromat­
ic. Likewise, every one with v(\) even must be antiaromatic. 
Sufficiency is therefore established. Thus, viewed as compo­
nent rules for allowed pericyclic reactions, (7) and (8) are 
coextensive with (1) and (2), respectively; they hold for all 
single closed cycles of overlap and, strictly, only for single 
cycles. 

For the class-1 components, to which (7) and (8) refer, 
m,- + Ni is odd, which means that m,- and JV,- have opposite 
parities. These components are therefore of two types: (4q 
+ 2)-electron components with Ni even, and (4/-)-electron 
components with Ni odd. If a component is denoted 

A if JV, is odd 
and S if JV1- is even (9) 

and these symbols are suffixed to (Aq + 2) and (Ar), repre­
senting the number of electrons in the component, we ob­
tain the component notation that is shown in Table III (q, r, 
A, S column) along with the rm.Nt parity equivalents. The 
component rules may now be given a more "Woodward-
Hoffmann" appearance, as in statement 10 for the thermal 

A the rma l per icycl ic react ion is allowed if, and 

only if, the total number of (4r)A and (Aq + 2)s 

components is odd (10) 

case. The analogous photochemical condition follows ob­
viously from (8). The relationship of A and S to the terms 
"antarafacial" and "suprafacial" of the actual WH rules is 
discussed in the next section. 

There exist various methods (differing in degrees of eleg­
ance, conciseness, and instructiveness) of reaching this 
point from the basic aromaticity rules, but that above 
brings out better than most the complementariness of topol­
ogy and number of electrons and perhaps also affords some 
insight into the nature of components. So far as determining 
the allowedness or forbiddenness of a pericyclic reaction is 
concerned, a component is fully defined by the parity of its 
sum mi + Nj. In this respect, there are only two types of 
component, classes 0 and 1 in Table III, and we see clearly 
from congruences 5 and 6 why only the latter class has de­
terminative significance. But chemistry demands a sharper 
distinction; it is usually necessary to specify the parities of 

Table III. Classification of Components 

Least residues of 
(Mj1Ni) m,- + JV,-

Class 0 j g g 

Class 1 jj°;j; 

0 
0 
1 
1 

mi.Ni 

Even,even 
Odd, odd 
Even, odd 
Odd, even 

q, r, A, S 
notation 

(4r)S 
(4Q + 2 ) A 

W A 
(Aq + 2 ) s 

m, and JV, separately (w,-,JV, column of Table III). The 
chief reason for this is that, normally, we seek to predict 
permitted topologies of reaction for a particular set of 
chemical groupings, containing specified numbers of elec­
trons; i.e., given a fixed set of m,'s, we seek to deduce per­
mitted sets of JV,'s. Chemical exigencies, then, necessitate 
four categories of component. What fourfold symbolism one 
selects will be largely a matter of taste and custom, but 
some advantage may attach to a numerical notation, e.g., 
(mt.Ni) with mi and JV1- written as their least residues (mod 
2).19 The four sets of components then become (0,0), (0,1), 
(1,0), and (1,1), as shown in Table III, the two "pericycli-
cally" distinct categories (w,- + JV,- odd and even) being dis­
tinguished by the least residue sum of the two numbers 
within the brackets. This notation is presented here not with 
any real hope that it will supplant existing symbolisms, but 
rather with the idea that, in an essentially topological prob­
lem, it is instructive to identify numerical invariants. 

"Antarafacial", "Suprafacial", and the Generalized 
Woodward-Hoffmann Rules 

The generalized Woodward-Hoffmann rule for thermal 
reactions12 is contained in (11), where (Aq + 2) and (Ar) 

A ground-s ta te per icycl ic change is symmet ry 
allowed when the total number of [Aq + 2)s and (4r)a 

components is odd (11) 

have the same significance as in the foregoing discussion, 
and s and a denote suprafacial and antarafacial, respec­
tively. The term "symmetry-allowed" effectively means no 
more than "will proceed easily", as does our term "al­
lowed". (Except in certain special cases, symmetry, in the 
strict sense, is irrelevant to pericyclic reactions.) Rules 10 
and 11 for thermal (i.e., ground-state) pericyclic reactions 
are therefore equivalent provided that (and this is no trivial 
point) our terms A and S are equivalent to the Woodward-
Hoffmann terms "antarafacial" and "suprafacial", respec­
tively. Similar comments, of course, apply to the corre­
sponding photochemical rules. It therefore remains to es­
tablish a relationship between A and S, on the one hand, 
and "antarafacial" and "suprafacial" on the other. 

By definition 9, a component is A if the total number of 
local nodal intersections of the connectivity cycle within 
that component is odd, and S if the total number is even. 
The idea, which is clearly apparent throughout Woodward 
and Hoffmann's work,1 that bonds are made or broken 
upon the same side of a nodal surface in a suprafacial pro­
cess and upon opposite sides in an antarafacial process is 
strongly suggestive of equivalence, and this equivalence is, 
in fact, readily demonstrated for most ordinary types of 
component. 

Consider a planar ir system participating as an S compo­
nent. The connectivity cycle undergoes an even number of 
AO nodal intersections within the component, i.e., crosses 
the molecular (ir-nodal) plane an even number of times, and 
must therefore enter at and leave from the same face of the 
x system. Bonding interactions therefore develop during 
reaction at two AO lobes situated upon the same face of the 
x system. Diagrams 10-13 illustrate the situation for C = C 
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S(Af1 = O) 
10 

S(JV1- - 2) 
11 

S(N1=O) 
12 

t _ 
S (N,- — 2) suprafacial suprafacial 

13 14 15 
and C = C — C = C acting as S components; 10 and 11 are of 
course equivalent, merely corresponding to different choices 
of connectivity cycle, as is also the case with 12 and 13. In 
an A-type ir component, on the other hand, the connectivity 
cycle crosses the molecular plane an odd number of times 
(N,- odd) and must therefore enter at and leave from oppo­
site faces of the x system; i.e., the two new bonding interac­
tions develop upon opposite faces of the K system (cf. 16-
19). For any planar ir component, then, S necessarily 

A(JV1-I) 
16 

A(N 1 =I) 
17 

A(N1 = I) 
IS 

A(N1 = 3) antarafacial antarafacial 
19 20 21 

implies the formation of bonds to the same side of the mo­
lecular plane, and A the formation of bonds to opposite 
sides. Hence, applied to ir components, S and A correspond 
exactly to "suprafacial" and "antarafacial", respectively, as 
defined and illustrated by Woodward and Hoffmann21 (cf. 
14,15, 20, and 21 in which the new bonds are formed in the 
senses indicated by the arrows). 

For a bonds derived from two sp3-type AO's, there are 
two separate nodes, one at each atom, and so N,- is 0, 1, or 2. 
Passage of the connectivity cycle through a node at one of 
the termini implies that, as the original a bond breaks, that 
terminus forms a new bond via its rear lobe, i.e., with inver­
sion of configuration. On the other hand, a terminus at 
which there is no nodal intersection forms a new bond with 
retention of configuration. The possibilities are shown in 
22-24, in which r and i indicate retention and inversion of 

S-(N1 = 0) 
22 

A(N 1 =I) 
23 

S (N1 = 2) 
24 

configuration, respectively. The stereochemical conse­
quences of the modes A and S are thus: A, ir or ri; S, rr or 
ii. Here again, there is precise agreement with the antarafa­
cial (ir, ri)-suprafacial (rr, ii) terminology.14 

An isolated 2p or sp3 AO presents no difficulty; 25 and 
27 are clearly both S and suprafacial, and 26 and 28 both A 
and antarafacial. 

0 < ) 2p p X Q _ 

25 26 

>^C 
•• ..• 

N1=O 
29 

W W 
N1 = 2 

30 

27 " 28 

N1 = O 
31 

N1 = I 
32 

The equivalence of the A-S and the antarafacial-supra-
facial terminology thus holds for all the cases that Wood­
ward and Hoffmann have discussed explicitly. It is not pos­
sible to give formal proof of equivalence in the general case, 
the reason being simply that no formal general definitions 
of the terms "antarafacial" and "suprafacial" exist in the 
literature. However, precisely because such definitions do 
not exist, it is justifiable at this point to invent them. Ac­
cordingly, we shall now assert the identity of "antarafacial" 
and "suprafacial" with, respectively, A and S. Since A and 
S are already defined in connectivity terms by virtue of (9), 
our proposed definitions of the Woodward-Hoffmann 
terms can be stated as in (12). This statement is exact and 

A component is antarafacial if the total number of 

local nodal in tersec t ions of the connectivity cycle 

occurr ing within that component is odd, 

and suprafacial if the total number is even (12) 

completely general, and it contravenes no valid statement 
existing or implied in the literature as to the meaning of 
"antarafacial" and "suprafacial". Rules 10 and 11 now be­
come exactly equivalent, as do the corresponding photo­
chemical rules. Therefore, if (12) is accepted, the general­
ized WH rules follow directly from rules 1 and 2 and have 
precisely the same scope; they hold wherever the Hiickel-
Heilbronner rules of aromaticity are valid. Hence, for mo­
nocyclic transition states, the WH rules and the theory of 
aromatic transition states will invariably make identical 
predictions. In this sense, the two kinds of approach are 
equivalent. 

The connectivity-cycle approach affords a simple, gener­
al, and rigorous method of categorizing any conceivable 
type of component. For example, an isolated Is orbital is in­
variably S (no nodes), as is an isolated 2s orbital, whether 
or not the connectivity cycle passes through the spherical 
node (shown as a dotted circle in 29 and 30); a C -H bond is 
S if the configuration of the carbon atom is retained (31), 
and A if the configuration is inverted (32); the treatment of 
an isolated d orbital is straightforward (cf. 33-35). 

It will be appreciated that A and S, as determined for 
any given component by the connectivity procedure, can al­
ways then be redefined for that particular component in 
purely geometric, or stereochemical terms. Consider, for ex­
ample, the statement above on the C-H bond. Also, consid­
er two d-orbital examples. A single-atom component partic­
ipating through a d orbital can be classified according as 
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the bonds being made and broken are collinear (e.g., 33 and 
35) or perpendicular (e.g., 34) [interestingly, both retention 

(33) and inversion (35) are suprafacial, in contrast to the p 
or sp3 orbital case (25-28)]. For a dT-pT bond participating 
as in 36 or 37, antarafacial is cis and suprafacial trans (the 

A(N1 = I) S (JV1--2) 
36 37 

reverse of the situation for a Px-p*- bond, e.g., 10 and 16).22 

We could draw up a set of such "chemical" definitions, 
thereby preserving any advantage that the generalized 
Woodward-Hoffmann rules may possess by virtue of their 
purely geometric formalism. 

Polycyclic Transition States 
Whilst the Hiickel-Mobius rules of aromaticity are 

strictly applicable only to monocycles, their extension to in­
dividual rings within a polycyclic network is now strongly 
justified by several different theoretical approaches, includ­
ing the PMO9 and VB10b methods and graph theory.24 In­
deed, it appears in general more fruitful to employ this 
piecemeal, or analytic, approach to aromaticity in poly-
cycles [and, for instance, to relate the properties of biphe-
nylene to the presence in the molecule of two aromatic 
(benzenoid) rings and an antiaromatic (cyclobutadienoid) 
ring] than to treat aromaticity and antiaromaticity as uni­
tary qualities characterizing a polycyclic system as a whole, 
for which treatment there exist no obvious generally appli­
cable criteria.25 As regards polycyclic transition states, the 
power of the analytic approach is amply demonstrated in 
Dewar's discussions9 of pericyclic reactions from the stand­
point of the PMO method. 

Given this approach of isolating individual rings, together 
with the fact, established in the foregoing, that the general­
ized WH rules and the Hiickel-Mobius rules are merely al­
ternative statements of the same basic idea concerning mo­
nocyclic systems, it is readily understandable that the WH 
rules should normally be successful when applied to a peri­
cyclic shift of bonds round a particular ring embedded in a 
more complex network. 

Thus, to describe the disrotatory electrocyclic ring open­
ing of benzocyclobutenes (eq 13) as a [x2s + a2s] process, 

R 

(13) 

38 R 
and therefore as thermally forbidden by the WH rules, has 
exactly the same status as the alternative description in 
terms of a transition state isoconjugate with planar benzo-
cyclobutadiene (39) and therefore destabilized by the pres­
ence of an antiaromatic, four-membered Huckel ring. In 
both descriptions, the process is reduced to an analog of the 
electrocyclic ring opening of cyclobutene. We might, in­
stead, reduce it to an analog of cycloocta-l,3,5-triene ring 
opening by focusing attention upon the entire periphery of 

the reacting system, which corresponds to the eight-mem-
bered Hi'ckel ring of 39. On this basis, we can describe dis­
rotatory ring opening in WH terms as a thermally forbid­
den [T2S + T2S + T2S + „2S] process (a representation appro­
priate to the other Kekule structure of 38) and, in doing so, 
we are simply translating into the language of components 
the statement that the outer eight-membered ring of the 
isoconjugate system (39) is antiaromatic. 

R 
39 40 

: ^ 

41 
Analogous parallels are easily seen in the corresponding 

conrotatory case (40), which in a convenient notation may 
be represented by the connectivity network 41, in which the 
sign ~ indicates the Mobius topology of the two An cir­
cuits.27 There is an exact correspondence between the [V2S 
+ ff2a] formulation and the presence of a four-atom Mobius 
circuit or, to choose the outer path, between [„.2S 4- X2S + 
T2S + „2^\ and the presence of an eight-atom Mobius cir­
cuit. Examples of this thermally allowed conrotatory pro­
cess are known.28 

The stereospecific29 thermal ring opening of bicyclobu-
tanes (eq 14) illustrates another aspect of the isolated-ring 

(14) 

approach. The reaction is categorized as a [a2s + CT2a] pro­
cess (42),30 which conforms to the generalized WH rule. 
Any possible influence that the "off-circuit" transannular 
1,3 interaction might exert upon the process is neglected in 
this analysis, but the neglect is easily justified. The transi­
tion state is isoconjugate with Mobius bicyclobutadiene 
(connectivity network 43) and, since there are good theoret­
ical reasons9'10b for deleting the 1,3 link as an essential sin­
gle bond,9 the network is reducible to a Mobius cyclobuta-
diene cycle (44). The photochemical conversion of hexa-

<*\ 

42 43 44 
1,3,5-trienes into bicyclo[3.1.0]hexenes (eq 15) involves a 

(15) 

similar "off-circuit" interaction. The two allowed modes, 
[TT4S + «-2a] and [T4a + T2S],31 strictly have connectivity net­
works 45 and 46, respectively, but these both reduce to Mo-

I I 

5 

45 

3 & . 

I 

4 1 ^ 1 
46 

bius benzene upon deletion of the transannular essential 
single bond. 

In the light of these parallels, it might be considered fea­
sible to construct, in essentially classical chemical terms, a 
completely general treatment of pericyclic reactions resting 
upon the twofold base of the AnJ(An + 2) rules and the iso-
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lated-ring approach to polycycles, but otherwise indepen­
dent of current theories of bonding. Indeed, the essential 
single bond is effectively a classical concept, for the term 
refers to bonds that are single in all possible Kekule (unex-
cited resonance) structures for a system (e.g., the central 
bonds in bicyclobutadiene, pentalene, and azulene).9 How­
ever, there are serious obstacles in the way of a wholly satis­
factory classical treatment of pericyclic reactions. It is not 
only that a classical formalism per se can reveal little of the 
inwardness of pericyclic reactions (well exemplified by the 
subtleties obligatory in the analysis of photochemical pro­
cesses);2"6,15 this conceded (and the concession is serious 
enough), there remain problems of internal consistency in 
connection with polycyclic transition states. "Off-circuit" 
interactions cannot always be ignored, as indeed is stressed 
by Woodward and Hoffmann in their discussion of the in-
terconversion of prismane and benzene.32 Superficially, this 
reaction in the benzene —- prismane direction (eq 16) is a 

i i 

6l<TV 6I4^rV 
Uq —•- [>y (is) 

4 

simple [X2S + x2a + T2a] process, and therefore allowed 
thermally. But, as Woodward and Hoffmann show by 
means of an orbital correlation diagram, it is actually an in­
stance where adverse "off-circuit" interactions render the 
process thermally forbidden. The obvious pericycle 1 -2-6-
5-3-4 is totally inadequate to define this system (cf. also ref 
9b and 10b). One can imagine a wide variety of reactions 
showing related features (cf. ref 32) and, to enable the gen­
eralized WH method to cope independently with such com­
plexities, it would be necessary to incorporate into it a very 
detailed set of subsidiary rules ad hoc. At the present time, 
one must surely conclude, any semblance of truly indepen­
dent status is an illusion. 

For polycycles, as for monocycles, the generalized com­
ponent rules are simply a classical chemical statement of 
the Hiickel-Mobius rules of aromaticity; they have the 
same scope, the same limitations. 

Several discussions have appeared concerning overlap sit­
uations more complex topologically than those normally en­
countered amongst pericyclic reactions and polycyclic aro­
matic compounds as conventionally understood, viz., spiro-
conjugation,33'34 bicycloaromaticity,34'35 and laticyclic and 
longicyclic systems.34 Conceivably, these analyses and 
graph-theoretic methods24'36 together contain the germ of 
some more complete systematization of delocalized net­
works than those currently available. 

Reflecting upon the classical stereochemical formalism 
of the generalized WH rules, Rassat 37 suggests that, as 
rules of parity, the WH rules may be aspects of a wider 
truth: "la chimie est i'mpaire". Perhaps not surprisingly, 
considering its extent, this intriguing conjecture is not de­
veloped in detail, although different kinds of reaction (SN2, 
SN2' , etc.) are cited as supporting examples, and an at­
tempt is made to subsume photochemical pericyclic reac­
tions under this surmised general chemical rule of parity. 
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system. More pertinent work lies in the very recent reports 
of 1,3,5-tri-ferf-butylpentalene and 1,6- and 1,7-bridged 
methano[12]annu!enes for which NMR data suggest sub­
stantial paramagnetic contributions to the proton chemical 
shifts.10 We initiated a series of studies directed toward the 
three isoelectronic hydrocarbons 1-3 since we felt that these 
would be unusually good models for the planar [12]annu-
lene with minimum bond alternation (the structural re­
quirements for antiaromaticity).11 As a criterion for the 
success of our peripheral electronic model, we took the 
splitting between the HOMO and LUMO. For the antiaro-
matic [12]annulene system, these orbitals are degenerate, 
and the molecule is a ground-state triplet. Therefore, the 
success of these structures in serving as models for the anti-
aromatic [12]annulene system requires a minimum pertur­
bation from the triplet ground state. Calculations support 
this contention. PPP-SCF calculations indicate the lowest 
lying triplet state of pyracylene 1 is approximately 2.05 eV 
above the ground state, while that for dibenzo[o/,g/i]pen-
talene (3) is only 0.32 eV. Compound 2 falls in between. In­
deed, the spectroscopic and chemical properties of pyracy­
lene are quite abnormal and can be best interpreted in 
terms of a perturbed [12]annulene.n In this paper, we wish 
to report our studies directed toward the dibenzopentalene 
system 3. 
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Abstract: The synthesis of 4,8-dihydrodibenzo[a/,gA]pentalene from 4,5-methylenephenanthrene is reported. The key step 
involves a ring contraction of the diazo ketone from 4,5-methylene-9,10-phenanthraquinone which is complicated by an un­
usual addition of the intermediate ketocarbene to the aromatic solvent. This dihydrodibenzopentalene derivative serves as the 
precursor of three derivatives of dibenzo[crf,g/i]pentalene, dibenzo[cd,g/i]pentaleno-4,8-quinone, dibenzo[cd,g/z]pentaleno-
4,8-semiquinone anion, and dilithium dibenzo[«/,£/z]pentalenide. The properties of these derivatives support the utilization 
of the peripheral electronic model which describes the dibenzopentalene system as a perturbed [12]annulene. The use of pen-
tafluorophenylcopper in a decarboxylation of a benzhydryl carboxylic acid is described. 
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